
Série M

ELECTROVANNES NORMALEMENT FERMEES

FICHE PRODUIT

Application

Les électrovannes de la série M sont utilisées dans des installations frigorifiques en général et dans les productions de séries pour assurer de franches fermetures de sections de tuyauterie.

Les électrovannes peuvent être montées sur les lignes liquide, gaz chauds et aspiration des installations frigorifiques.

Matériaux

Corps de vanne laiton, acier inox **Joint** PTFE (Teflon) Tubes de raccord à braser : cuivre flare: laiton

Bobine cuivre, acier, Crastin

Caractéristiques

MA: action directe, corps équerre MD: action directe, passage droit

MS: servocommandée, passage droit

Normalement fermées

Construction hermétique

Faible perte de charge

Haute performance

Action directe : pas de pression différentielle minimum nécessaire à l'ouverture de la vanne

Servocommandée (action indirecte) : pression différentielle minimum de 0,05 bar nécessaire pour l'ouverture de la vanne

Raccords à braser ou raccords flare (à visser)

Bobines pour courant alternatif (CA) et pour courant continu (CC)

Réfrigérants: tous les HFC et HCFC

ne convient pas pour l'ammoniac

Données techniques

Puissance nominale voir tableau page 2

Pression PS maxi 35 bars Pression de contrôle maxi 50 bars Pression différentielle mini MA/MD: 0 bar MS: 0,05 bar

Pression différentielle maxi MS: 2 bars

Pression différentielle maxi bobine CA: MA/MD: 25 bars d'ouverture MOPD

MS: 30 bars

bobine CC: MA/MD: 21 bars

MS: 21 bars

Température maxi du fluide 125℃ Température mini du fluide -45℃ Température ambiante maxi 80℃ Température ambiante mini -40℃

Nombre de manoeuvres > 1,5 millions

Tensions standard des CA: 230 V, 110 V, 24 V **bobines** CC: 230 V, 24 V

(autres sur demande)

Tolérance sur la tension CA: ±10%

CC: +10 %, -5 %

Puissance nominale QN (kW)

	Facteur de		Liq	uide			Gaz c	hauds			Aspii	ration	
Туре	débit K _v (m³/h)	R134a	R22	R407C	R404A R507	R134a	R22	R407C	R404A R507	R134a	R22	R407C	R404A R507
				,	Action d	irecte							
MA 062	0,17	5,21	5,62	5,39	3,87	1,14	1,47	1,45	1,29	-	-	-	-
MD 062	0,17	5,21	5,62	5,39	3,87	1,14	1,47	1,45	1,29	-	-	-	-
MD 102	0,22	6,74	7,27	6,98	5,01	1,48	1,90	1,88	1,67	-	-	-	-
MD 103	0,23	7,05	7,61	7,29	5,24	1,54	1,99	1,96	1,75	-	1	-	-
				Se	rvocom	mandée							
MS 103	0,9	27,6	29,8	28,5	20,5	6,04	7,78	7,67	6,83	1,54	2,06	1,92	1,80
MS 104	0,9	27,6	29,8	28,5	20,5	6,04	7,78	7,67	6,83	1,54	2,06	1,92	1,80
MS 124	1,6	49,0	52,9	50,7	36,4	10,7	13,8	13,6	12,1	2,74	3,66	3,42	3,19
MS 125	1,6	49,0	52,9	50,7	36,4	10,7	13,8	13,6	12,1	2,74	3,66	3,42	3,19
MS 165	2	61,3	66,1	63,4	45,5	13,4	17,3	17,1	15,2	3,42	4,57	4,27	3,99
MS 167	2	61,3	66,1	63,4	45,5	13,4	17,3	17,1	15,2	3,42	4,57	4,27	3,99
MS 227	4	123	132	127	91,1	26,8	34,6	34,1	30,4	6,85	9,14	8,54	7,98

La puissance nominale QN est basée sur les conditions suivantes :

Fluide	Température d'évaporation	Température de condensation	Sous- refroidissement	Température gaz chauds	Chute de pression à l'électrovanne
	to (℃)	tc (℃)	Δtc2u (K)	tн (℃)	∆p (bar)
Liquide	-10	25	1	-	0,4
Gaz chauds	-10	25	1	25 ℃	1
Aspiration	-10	25	1	-	0,15

Pour d'autres conditions de fonctionnement, voyez les tableaux suivants ou notre logiciel de calcul Valve Tool pour le choix des électrovannes.

Détermination de l'électrovanne pour ligne liquide

La puissance frigorifique Q₀, multipliée par le facteur correctif fTF et multipliée par le facteur correctif f△PF donne la puissance nominale nécessaire Qℕ.

$Q_N = Q_0 x fTF x f_{\Delta PF}$

QN puissance nominale (selon tableau page 2)

Qo puissance frigorifique

fTF facteur correctif pour température d'évaporation et de

liauide

 $f_{\Delta PF}$ facteur correctif pour la chute de pression à

l'électrovanne

Facteur correctif fTF pour la variation de puissance selon les températures de fonctionnement

	Température d'évaporation t₀ (℃)																						
t∟˙ (℃)			R1:	34a						22					R4070	;		R404A, R507					
(0)	+10	±0	-10	-20	-30	-40	+10	±0	-10	-20	-30	-40	+10	±0	-10	-20	-30	+10	±0	-10	-20	-30	-40
0	-	-	0,80	0,83	0,85	0,88	-	-	0,82	0,83	0,85	0,88	-	-	0,80	0,80	0,80	-	-	0,73	0,76	0,79	0,83
+5	-	-	0,83	0,86	0,89	0,93	-	-	0,85	0,87	0,89	0,91	-	0,80	0,80	0,80	0,90	-	-	0,77	0,8	0,84	0,88
+10	-	0,84	0,87	0,91	0,94	0,97	-	0,86	0,88	0,90	0,92	0,95	-	0,80	0,90	0,90	0,90	-	0,79	0,82	0,85	0,89	0,94
+15	-	0,88	0,91	0,94	0,98	1,02	-	0,90	0,92	0,94	0,96	0,99	0,90	0,90	0,90	0,90	1,00	-	0,84	0,87	0,91	0,95	1,00
+20	0,89	0,92	0,95	0,99	1,03	1,08	0,92	0,94	0,96	0,98	1,00	1,03	0,90	0,90	0,90	1,00	1,00	0,86	0,89	0,93	0,97	1,02	1,08
+25	0,94	0,96	1,00	1,05	1,09	1,14	0,96	0,98	1,00	1,03	1,05	1,09	0,90	1,00	1,00	1,00	1,10	0,92	0,96	1,05	1,05	1,11	1,18
+30	0,99	1,02	1,06	1,12	1,16	1,22	1,01	1,02	1,05	1,08	1,10	1,14	1,00	1,00	1,00	1,10	1,20	0,99	1,03	1,08	1,14	1,21	1,29
+35	1,04	1,08	1,12	1,18	1,24	1,30	1,05	1,07	1,10	1,13	1,16	1,20	1,10	1,10	1,10	1,20	1,20	1,08	1,13	1,19	1,26	1,34	1,44
+40	1,10	1,14	1,19	1,26	1,32	1,39	1,10	1,12	1,15	1,19	1,22	1,26	1,10	1,20	1,20	1,30	1,30	1,18	1,24	1,32	1,40	1,50	1,63
+45	1,18	1,22	1,28	1,35	1,42	1,50	1,17	1,19	1,22	1,26	1,29	1,34	1,20	1,30	1,30	1,40	1,40	1,32	1,39	1,48	1,59	1,72	1,88
+50	1,25	1,24	1,37	1,45	1,53	1,62	1,23	1,26	1,29	1,33	1,37	1,42	1,30	1,40	1,40	1,50	1,60	1,50	1,59	1,7	1,85	2,02	2,23
+55	1,35	1,41	1,48	1,58	1,67	1,78	1,30	1,33	1,37	1,42	1,46	1,52	1,40	1,50	1,60	1,70	1,80	1,74	1,87	2,02	2,22	2,47	2,79
+60	1,46	1,55	1,61	1,73	1,84	1,97	1,38	1,41	1,46	1,51	1,56	1,63	-	-	-	-	-	-	-	-	-	-	-

^{*} Température du réfrigérant liquide à l'entrée de l'électrovanne.

Facteur correctif f∆PF pour la variation de puissance selon la chute de pression retenue pour l'électrovanne

Chute de pression à l'électrovanne Δp (bar)	0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50	0,55	0,60	0,65	0,70
Facteur correctif f∆PF	2,83	2,00	1,63	1,41	1,26	1,15	1,07	1,00	0,94	0,89	0,85	0,82	0,78	0,76

Puissance de l'électrovanne en gaz chauds

Туре	Chute de	Puissance (kW)*																	
	pression à						Te	mpér	ature	de co	nden	satio	n tc (°	C)					
	l'électro-		ı	R134a	1				R22				R40	07C		F	R404A	, R50	7
	vanne	+25	+30	+40	+50	+60	+25	+30	+40	+50	+60	+25	+30	+40	+50	+25	+30	+40	+50
	∆p (bar)																		
							Ad	ction c	lirecte										
	0,2	0,54	0,55	0,57	0,58	0,57	0,68	0,70	0,74	0,76	0,78	0,62	0,65	0,68	0,70	0,60	0,60	0,58	0,53
MA 062	0,5	0,83	0,86	0,89	0,90	0,89	1,06	1,10	1,15	1,19	1,22	0,98	1,02	1,08	1,11	0,93	0,93	0,90	0,83
	1,0	1,12	1,17	1,23	1,25	1,24	1,46	1,51	1,60	1,67	1,70	1,39	1,44	1,52	1,57	1,29	1,29	1,26	1,16
MD 062	1,5	1,31	1,38	1,47	1,50	1,50	1,74	1,81	1,93	2,01	2,06	1,71	1,77	1,87	1,93	1,54	1,55	1,52	1,41
	2,0	1,44	1,52	1,64	1,70	1,70	1,94	2,04	2,19	2,29	2,34	1,96	2,04	2,15	2,22	-	-	-	-
	0,2	0,69	0,72	0,75	0,75	0,73	0,77	0,91	0,96	0,99	1,00	0,81	0,83	0,88	0,91	0,77	0,77	0,74	0,68
	0,5	1,07	1,11	1,15	1,17	1,16	1,37	1,42	1,49	1,55	1,58	1,27	1,32	1,39	1,44	1,20	1,20	1,17	1,07
MD 102	1,0	1,44	1,51	1,60	1,62	1,61	1,89	1,96	2,08	2,15	2,20	1,80	1,87	1,97	2,04	1,66	1,67	1,63	1,50
	1,5	1,69	1,78	1,89	1,94	1,93	2,25	2,34	2,50	2,60	2,66	2,21	2,29	2,41	2,49	1,99	2,00	1,96	1,82
	2,0	1,86	1,97	2,12	2,20	2,20	2,52	2,64	2,83	2,97	3,03	2,55	2,64	2,79	2,88	-	-	-	-
	0,2	0,72	0,75	0,78	0,78	0,77	0,80	0,95	1,00	1,03	1,05	0,84	0,87	0,92	0,95	0,80	0,80	0,78	0,71
	0,5	1,12	1,16	1,21	1,22	1,21	1,43	1,48	1,56	1,62	1,65	1,33	1,38	1,46	1,50	1,26	1,26	1,22	1,12
MD 103	1,0	1,51	1,58	1,67	1,69	1,68	1,98	2,05	2,17	2,25	2,30	1,88	1,95	2,06	2,13	1,74	1,74	1,70	1,57
	1,5	1,77	1,86	1,98	2,03	2,02	2,35	2,45	2,61	2,72	2,78	2,31	2,39	2,52	2,61	2,08	2,09	2,05	1,90
	2,0	1,94	2,06	2,22	2,30	2,30	2,64	2,76	2,96	3,10	3,17	2,66	2,76	2,91	3,01	-	-	-	-
							Serv	ocom		ée			•						
	0,2	2,83	2,93	3,04	3,06	3,02	4,20	4,33	4,55	4,70	4,79	3,60	3,71	3,90	4,03	3,09	3,09	3,00	2,74
MS 103	0,5	4,37	4,53	4,73	4,78	4,72	6,55	6,76	7,13	7,38	7,52	5,61	5,79	6,11	6,33	4,89	4,89	4,80	4,37
MS 104	1,0	5,93	6,19	6,52	6,63	6,57	9,02	9,35	9,91	10,3	10,5	7,73	8,01	8,49	8,83	6,77	6,86	6,69	6,09
IVIO 104	1,5	6,93	7,29	7,77	7,95	7,92	10,8	11,2	11,9	12,4	12,7	9,26	9,60	10,2	10,6	8,14	8,14	8,06	7,37
	2,0	7,60	8,07	8,66	9,00	9,00	12,1	12,6	13,5	14,2	14,5	10,4	10,8	11,6	12,2	-	-	-	-
	0,2	5,04	5,21	5,40	5,44	5,36	6,40	6,60	6,94	7,17	7,30	5,86	6,07	6,41	6,62	5,60	5,60	5,44	4,96
MS 124	0,5	7,77	8,07	8,40	8,50	8,39	9,97	10,3	10,9	11,2	11,5	9,27	9,6	10,1	10,5	8,76	8,76	8,52	7,80
MS 125	1,0	10,5	11,0	11,6	11,8	11,7	13,7	14,3	15,1	15,7	16,0	13,1	13,6	14,3	14,8	12,1	12,1	11,8	10,9
100 120	1,5	12,3	13,0	13,8	14,1	14,1	16,4	17,1	18,2	19,0	19,4	16,1	16,6	17,6	18,1	14,5	14,6	14,3	13,2
	2,0	13,5	14,3	15,5	16,0	16,0	18,4	19,2	20,6	21,6	22,1	18,5	19,2	20,3	20,9		-	-	-
	0,2	6,29	6,51	6,76	6,80	6,70	8,00	8,25	8,68	8,96	9,12	7,33	7,59	8,01	8,28	7,00	7,00	6,80	6,20
MS 165	0,5	9,72	10,1	10,5	10,6	10,5	12,5	12,9	13,6	14,1	14,3	11,6	12,0	12,7	13,1	10,9	10,9	10,6	9,70
MS 167	1,0	13,2	13,7	14,5	14,7	14,6	17,2	17,8	18,9	19,6	20,0	16,4	17,0	17,9	18,5	15,1	15,2	14,8	13,6
107	1,5	15,4	16,2	17,2	17,7	17,6	20,5	21,3	22,7	23,7	24,2	20,1	20,8	22,0	22,7	18,1	18,2	17,9	16,5
	2,0	16,9	17,9	19,3	20,0	20,0	23,0	24,0	25,7	27,0	27,6		24,0	25,3	26,2	-	-	-	-
	0,2	12,6	13,0	13,5	13,6	13,4	16,0	16,5	17,4	17,9	18,2	14,7	15,2	16,0	16,6	14,0	14,0	13,6	12,4
	0,5	19,4	20,1	21,0	21,2	21,0	24,9	25,8	27,1	28,1	28,6		24,0	25,3	26,2	21,9	21,9	21,3	19,5
MS 227	1,0	26,3	27,5	29,0	29,5	29,2	34,4	35,6	37,8	39,2	40,0	32,8	33,9	35,8	37,0	30,3	30,4	29,7	27,3
	1,5	30,8	32,4	34,5	35,3	35,2	41,0	42,6	45,4	47,4	48,4	40,1	41,6	43,9	45,3	36,3	36,5	35,8	33,1
	2,0	33,8	35,9	38,7	39,9	40,0	45,9	48,0	51,5	53,9	55,2	46,3	48,0	50,7	52,4	-	-	-	-

^{*} Puissances basées sur une température d'évaporation t₀ = -10 ℃, température gaz chauds t н = +25 ℃ avec 1 K de sous-refroidissement.

Avec une modification de ± 10°C de la température des gaz chauds, la puissance de l'électrovanne varie d'env. ±2,5 % (inversement proportionnel). Avec d'autes températures d'évaporation to, les puissances indiquées ci-dessus devront être multipliées par les facteurs correctifs suivants :

to (℃)	-50	-40	-30	-20	-10	±0	+10
R134a	-	0,85	0,90	0,95	1,00	1,05	1,09
R22	0,88	0,91	0,95	0,97	1,00	1,03	1,05
R407C	0,83	0,88	0,92	0,95	1,00	1,01	1,06
R404A, R507	0,75	0,81	0,88	0,13	1,00	1,05	-

Détermination de l'électrovanne pour la ligne des gaz d'aspiration

La puissance frigorifique Q₀, multipliée par le facteur correctif fτs et multipliée par le facteur correctif fΔPs donne la puissance nominale nécessaire QN.

$Q_N = Q_0 \times f_{TS} \times f_{\Delta PS}$

QN puissance nominale (selon tableau page 2)

Qo puissance frigorifique

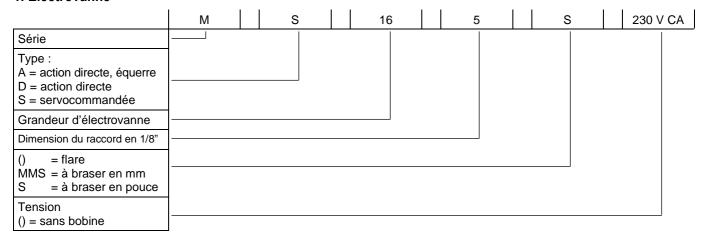
fts facteur correctif pour température d'évaporation et de

condensation

 $f_{\Delta PS}$ facteur correctif pour la chute de pression à

l'électrovanne

Facteur correctif fts pour la variation de puissance selon les températures de fonctionnement

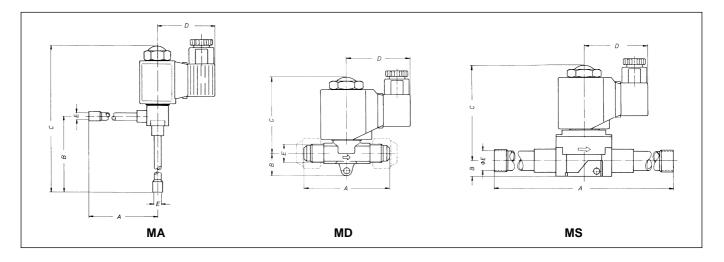

Température		Tempéra	ature de condensatio	on tc (℃)	
d'évaporation to (℃)	+60	+50	+40	+30	+20
10 (0)		Pour réf	rigérants R134a, R22	2, R407C	
+10	0,98	0,86	0,78	0,71	0,66
±0	1,19	1,05	0,95	0,86	0,79
-10	1,48	1,29	1,16	1,05	0,96
-20	1,88	1,62	1,44	1,31	1,19
-30	2,42	2,08	1,83	1,65	1,59
-40	3,20	2,71	2,37	2,13	1,92
		Pour	réfrigérants R404A,	R507	
+10	-	1,14	0,82	0,71	0,63
±0	-	1,24	1,01	0,87	0,77
-10	-	1,57	1,26	1,07	0,94
-20	-	2,02	1,60	1,35	1,17
-30	-	2,67	2,07	1,72	1,49
-40	-	3,62	2,74	2,25	1,93

Facteur correctif f∆PS pour la variation de puissance selon la chute de pression retenue pour l'électrovanne

Chute de pression à l'électrovanne Δp (bar)	0,05	0,075	0,10	0,15	0,20	0,30	0,40	0,50	0,60
Facteur correctif f∆PS	1,73	1,41	1,22	1,00	0,87	0,71	0,61	0,55	0,50

Identification des types / Données de commande

1. Electrovanne


2. Bobine

Type de bobine, puissance	Pour électrovanne	Tension, fréquence	Tolérance sur la tension
MC 062, 8 W	MA 062(S)(MMS)	230 V, 50/60 Hz	
	MD 062(S)(MMS)	110 V, 50/60 Hz	±10 %
		24 V, 50/60 Hz	
MC 102-227, 13 W	MD 102(S)(MMS)	230 V, 50/60 Hz	
	MD 103(S)(MMS)	110 V, 50/60 Hz	±10 %
	MS 103-227(S)(MMS)	24 V, 50/60 Hz	
MC 102-227, 20 W	MD 102(S)(MMS)	24 V CC	+10 %
	MD 103(S)(MMS)		
	MS 103-227(S)(MMS)	230 V CC	-5 %

Protection IP65, bobine avec fiches de sécurité selon DIN 43650 et connecteur PG11.

Dimensions et poids

Туре	Raccords	Pour tube de		Dimensi	ons (mm)	_	Poids (kg)			
	(E)	Ø	Α	В	С	D	sans bobine 230 V CA	avec bobine 230 V CA		
			Action	directe						
MA 062MMS	6 mm ODF	6 mm	88	88	142	47	0,15	0,30		
MA 062S	1/4" ODF	1/4"	88	88	142	47	0,15	0,30		
MD 062	7/16" UNF	6 mm, 1/4"	65	17	57	47	0,19	0,33		
MD 062MMS	6 mm ODF	6 mm	112	17	57	47	0,17	0,31		
MD 062S	1/4" ODF	1/4"	112	17	57	47	0,17	0,31		
MD 102	7/16" UNF	6 mm, 1/4"	68	19	64	54	0,19	0,33		
MD 102MMS	6 mm ODF	6 mm	118	19	64	54	0,17	0,31		
MD 102S	1/4" ODF	1/4"	118	19	64	54	0,17	0,31		
MD 103	5/8" UNF	10 mm, 3/8"	71	19	64	54	0,28	0,52		
MD 103MMS	10 mm ODF	10 mm	118	19	64	54	0,25	0,49		
MD 103S	3/8" ODF	3/8"	118	19	64	54	0,25	0,49		
			Servocor	mmandée						
MS 103	5/8" UNF	10 mm, 3/8"	84	12	79	54	0,51	0,75		
MS 103MMS	10 mm ODF	10 mm	159	12	79	54	0,55	0,79		
MS 103S	3/8" ODF	3/8"	159	12	79	54	0,55	0,79		
MS 104 MMS	12 mm ODF	12 mm	159	12	79	54	0,56	-		
MS 104S	1/2" ODF	1/2"	159	12	79	54	0,56	-		
MS 124	3/4" UNF	12 mm, 1/2"	91	12	79	54	0,54	0,77		
MS 124MMS	12 mm ODF	12 mm	159	12	79	54	0,56	0,79		
MS 124S	1/2" ODF	1/2"	159	12	79	54	0,56	0,79		
MS 125S	16 mm, 5/8" ODF	16 mm, 5/8"	159	12	79	54	0,56	-		
MS 165	7/8" UNF	16 mm, 5/8"	97	12	79	54	0,57	0,80		
MS 165S	16 mm, 5/8" ODF	16 mm, 5/8"	159	12	79	54	0,59	0,82		
MS 167S	22 mm, 7/8" ODF	22 mm, 7/8"	173	12	79	54	0,59	-		
MS 227S	22 mm, 7/8" ODF	22 mm, 7/8"	262	22	88	54	1,45	1,65		

Montage

- Position du tube guide noyau de la verticale à l'horizontale.
- La flèche sur le corps de vanne doit correspondre au sens du courant.
- Pour montage ou démontage de la bobine, il faut laisser une distance de 45 mm au-dessus de l'électrovanne.
- Protéger l'électrovanne de l'humidité et des gouttes d'eau.

· Electrovannes à braser :

- Démonter écrou-capuchon, bobine et joints lors du brasage.
- o Lors du brasage, refroidir le corps de vanne. La température ne doit pas dépasser 120 ℃ au corps.
- Eloigner toujours la flamme de l'électrovanne pendant la brasure
- Au réassemblage après brasage, remettre joints de bobines et de connecteur.

· Electrovannes à visser (flare) :

- Lors du serrage des écrous, maintenir le corps de vanne uniquement avec une clé adaptée aux méplats prévus.
- Ne pas utiliser bobine et tube guide noyau comme levier (endommagement des minces parois du tube guidenoyau!).
- En cas d'utilisation de la bobine CC de 20 W pour des électrovannes à action directe, l'écrou flare doit être serré de façon à ce que l'un des pans de l'écrou soit parallèle à la partie inférieure de la bobine.

- La tension des bobines doit correspondre à la tension du réseau.
- La fiche plate du connecteur est la fiche de terre. Le fil de terre doit être connecté à l'installation.
- Ne jamais mettre sous tension une bobine non montée sur une vanne
- Tous les joints pour la bobine et le connecteur doivent être utilisés afin de garder la classe de protection IP65.
- Serrer la vis de fixation du connecteur.
- Il est interdit de procéder à des modifications de l'électroyanne.